Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shuqi Qin ${ }^{\text {a }}$ and Guodong Yin ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Chemistry and Engineering,
Northwest Normal University, Lanzhou 730070, People's Republic of China, and ${ }^{\mathbf{b}}$ Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
Correspondence e-mail: qinsq@nwnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.065$
$w R$ factor $=0.172$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

rel-(11bR,11cS)-Diethyl 5,10-dihydro-7-nitro-4,11-dioxo-1H,3H,4H,11H-2-oxa- 3a,4a,10a,11a-tetraazabenz[f]indeno[2,1,7-ija]azulene-11b,11cdicarboxylate

In the title compound, $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{9}$, the dihedral angle between the two five-membered rings of the glycoluril system is $68.79(14)^{\circ}$ and the crystal structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

The design and synthesis of host molecules for binding of neutral guest molecules continues to be an area of interest in supramolecular chemistry. In recent years, many molecular clips based on glycoluril and its derivatives have been studied, which can bind dihydroxy-substituted aromatic guests by means of hydrogen bonds as well as $\pi-\pi$ interactions (Sijbesma \& Notle, 1991; Reek et al., 1997; Rowan et al., 1999). In this paper, we report the crystal structure of the title compound (I) (Fig. 1), a new half molecular clip based on diethoxycarbonyl glycoluril. Selected bond lengths and angles are listed in Table 1. The dihedral angle between the two fivemembered rings of the glycoluril system is $68.79(14)^{\circ}$ and the crystal packing is mainly governed by intermolecular C $\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2 and Fig. 2).

(I)

Experimental

1,2-Bis(chloromethyl)-4-nitrobenzene $(1.1 \mathrm{~g}, \quad 5 \mathrm{mmol})$, diethoxycarbonyl glycoluril ($1.43 \mathrm{~g}, 5 \mathrm{mmol}$), formaldehyde ($2.4 \mathrm{~g}, 40 \mathrm{mmol}$) and trifluoroacetic acid (30 ml) were used as starting materials to synthesize the title compound according to the literature (Wu et al., 2002). Crystals suitable for X-ray diffraction were grown by slow evaporation of $\mathrm{MeCN}-\mathrm{MeOH}(1: 1)$ solutions at ambient conditions.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{9} \\
& M_{r}=475.42 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=10.0454(18) \AA \\
& b=25.564(5) \AA \\
& c=8.4997(15) \AA \\
& \beta=99.427(3)^{\circ} \\
& V=2253.2(7) \AA^{3} \\
& Z=4
\end{aligned}
$$

Received 31 August 2005 Accepted 5 September 2005 Online 7 September 2005

Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)
$T_{\min }=0.966, T_{\max }=0.988$
11538 measured reflections

Refinement

Refinement on F^{2}

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0729 P)^{2}\right.
$$

$+1.0059 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=0.48 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.32 \mathrm{e}_{\AA^{-3}}$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

C1-N1	$1.462(5)$	C11-N2	$1.441(3)$
C9-O3	$1.205(3)$	C11-N3	$1.444(3)$
C9-N2	$1.374(3)$	C11-C15	$1.566(3)$
C9-N4	$1.384(3)$	C15-N4	$1.443(3)$
C10-O4	$1.211(3)$	C15-N5	$1.458(3)$
C10-N3	$1.372(3)$	C19-O9	$1.415(3)$
C10-N5	$1.385(3)$	C20-O9	$1.417(3)$
N2-C7-C6	$111.93(19)$	N2-C11-N3	$114.3(2)$
N3-C8-C5	$113.6(2)$	N4-C15-N5	$111.5(2)$
N2-C9-N4	$107.5(2)$	C19-O9-C20	$110.9(2)$
N3-C10-N5	$108.2(2)$		
C6-C7-N2-C9	$-74.5(3)$	C5-C8-N3-C10	$81.6(3)$
C6-C7-N2-C11	$80.2(3)$	C5-C8-N3-C11	$-73.9(3)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 20-\mathrm{H} 20 A \cdots \mathrm{O}^{\text {i }}$	0.97	2.54	3.262 (4)	132
C19-H19B $\cdots \mathrm{O}^{\text {i }}$	0.97	2.54	3.444 (4)	156
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{O} 7^{\text {ii }}$	0.97	2.52	3.293 (5)	136
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 3{ }^{\text {iii }}$	0.97	2.41	3.288 (3)	150
Symmetry codes: $-x,-y+1,-z+2$	$\begin{equation*} -x+1,-y+1,-z+2 \tag{iii} \end{equation*}$		(ii) $x,-y+\frac{3}{2}, z-\frac{1}{2}$;	

After their location in a different Fourier map, H atoms were placed in calculated positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and $U_{\text {iso }}=1.2-1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Figure 1
View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen-bonding (dashed lines).

The authors are grateful to Northwest Normal University and Gansu Province Natural Science Fund (No. 3ZS051-A25002) for financial support.

References

Bruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Reek, J. N. H., Priem, A. H., Engelkamp, H., Rowan, A. E., Elemans, J. A. A. W. \& Notle, R. J. M. (1997). J. Am. Chem. Soc. 119, 9956-9964.

Rowan, A. E., Elemans, J. A. A. W. \& Notle, R. J. M. (1999). Acc. Chem. Res. 32, 995-1006.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sijbesma, R. P. \& Notle, R. J. M. (1991). J. Org. Chem. 56, 3122-3124.
Wu, A., Chakraborty, A., Witt, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. \& Isaacs, L. (2002). J. Org. Chem. 67, 5817-5830.

